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INTRODUCTION

Aerothermochemistry is the study of chemical reactions in flow systems and was first
described by von Karman in 1951 (ref 1). The modification of the heat transfer coefficient by a
blocking effect for the mass addition of chemically reacting wall material into the boundary layer
was first described by Reshotko and Cohen in 1955 (ref 2) and Cohen et al. in 1957 (ref 3). The
thermochemical erosion of reentry vehicle (RV) heat shield material for various chemically
reacting systems was first studied by Denison and Dooley in 1957 (ref 4).

Denison and Dooley's thermochemical erosion analysis regarding convective heat transfer

~ with mass addition and chemical reactions was subsequently unified and summarized by Lees of

California Institute of Technology (consultant to the Ramo-Wooldridge Corporation) in 1958 (ref
5). From early thermochemical erosion models, to JANNAF standardized current models (refs
6,7), the near exclusive use of Lees’ analysis has stood the test of time, and demonstrates that the
major assumptions in his 1958 paper are still reasonable and valid for RV nosetips and rocket
chambers/nozzles.

In the last twenty years, gun barrel technology has primarily focused on mechanical and
metallurgical aspects with a secondary focus on erosion. Catastrophic gun barrel failures have
been nearly eliminated, while thermochemical erosion (thermochemical ablation with mechanical
erosion) problems have intensified due to performance requirements demanding the use of high-
flame temperature propellants. The erosion of gun barrels is generally attributed to both thermal
ablation (bore surface phase transformations with aerodynamic flow removal) and thermochemical
ablation (gas-wall chemical reactions with acrodynamic flow removal), although the surface
temperature should remain below the solidus temperature for a practical gun design.

In 1990, the U.S. Army Benet Laboratories (Benet) conducted an extensive literature
search of military, NASA, and commercial sources that revealed no "shrink-wrapped"
thermochemical erosion modeling codes for gun barrels. This search did reveal the JANNAF
standardized rocket community counterpart, which includes the two-dimensional kinetics (TDK)
(chemistry by CET and mass addition boundary layer (MABL)), as well as the materials ablation
conduction erosion (MACE) modeling codes for predicting thermochemical erosion for rocket
chambers, nozzles, and nosetips (refs 6-8). Software and Engineering Associates, Inc. (SEA) is
now the sole maintainer and developer of the TDK/MACE rocket erosion codes.

In 1991, Benet and SEA mutually determined that these rocket codes should be modified
for guns and that these codes actually exceeded gun erosion code requirements and expectations
(ref 9). It became obvious that two of the analytical tools needed to begin the thermochemical
erosion analysis of gun barrels were already available in the gun community. These tools were
Freedman's BLAKE thermodynamic equilibrium code with compressibility (ref 10), and Gough's
NOVA interior ballistics code (ref 11). SEA and Benet successfully modified the BLAKE,
NOVA, TDK, and MACE codes into what appears to be the first unified gun erosion code (ref 9).



A joint SEA/Benet research seminar was given at Benet on this first unified gun erosion
code to present its capabilities, using a gun system example where erosion cannot be explained by
thermomechanical effects alone (refs 9,12). Several JANNAF-sponsored gun erosion meetings
have implied a gun system-specific thermochemical erosion component for many previous gun
systems (ref 13). For this gun system example, with its solid propellant product-steel (or -
chromium plated steel), an ablative scale-like oxidation of iron and chromium by gas-wall
diffusion of oxygen predominates, and these loosely held crack-rich brittle scale layers are easily
removed by mechanical erosive forces. U.S. Army experimental data support the existence of gun
barrel oxidation (ref 14). In July 1995, the first-known gun barrel thermochemical ablation-
mechanical erosion modeling code was published by Benet (ref 15), and a summary is presented in
this report. In October 1995, the Army Research Laboratory (ARL) published its thermal
ablation-mechanical erosion gun modeling code (ref 16) and has not published the addition of a
chemical component to date.

PROCEDURE

The thermochemical erosion analysis procedure for the 155-mm unicannon gun system
(ref 12) (full charge) consists of five analyses, including the following codes:

. NOVA (refs 9,11) (interior ballistics and core flow)
. BLAKE (refs 9,10) (gas thermochemistry and compressibility)

. TDK/MABL (refs 6,9) (heat transfer modified by boundary layer mass addition,
decoupled from core flow)

. TDK/CET (refs 6,8-9) (gas-wall thermochemistry)
. MACE (refs 7,9) (ablation, conduction, and erosion profiles)

The TDK/MABL module generates transport properties, Mollier gas properties, adiabatic
conditions, and cold wall heat transfer conditions using NOVA/BLAKE data as input. The
TDK/CET module generates H-B Mollier chart linkage files for nonreacting (inert) walls, reacting
chromium walls, and reacting A723 steel walls using NOVA/BLAKE data as input; combustion
product omissions are based on experimental testing and a U.S. Army report (ref 14). The
MACE code calculates the transient thermochemical response and generates ablation, conduction,
erosion surface, and depth profiles as a function of time, travel, and rounds. MACE uses NOVA,
BLAKE, MABL, and CET data as input for the cracked and uncracked 0.005-inch chromium
plated A723 steel and A723 steel alone walls at two axial locations (1 and 2 feet) and two firing
rates (cold single shot and hot 12 rpm bursts). MACE gas-wall chemical kinetics data are based
on testing and the literature (ref 9).



RESULTS AND DISCUSSION

For this thermochemical erosion analysis, any propellant-wall combination can be
modeled, each mechanism's importance is identified, computer resources are modest (high-end
PC), parametric analysis is possible, and incremental upgrades are feasible. However, this
approach requires engineering judgement and extrapolations are questionable.

The NOVA analysis outputs the pressure, velocity, and temperature core flow as a
function of time and travel. The BLAKE analysis outputs pressure-temperature-compressibility
data, as well as thermochemistry data.

The TDK/MABL analysis outputs adiabatic wall recovery enthalpy (H,) and adiabatic wall
temperature (7,,) data as a function of time and travel. The recovery enthalpy is the potential
chemistry driver where the heat transfer approaches zero and the adiabatic wall temperature is the
potential temperature without reactions. The TDK/MABL analysis also outputs cold wall heat
transfer rate (Q,,) data as a function of time and travel. This heat transfer rate is the wall heat
flux evaluated at the cold wall temperature.

The TDK/MABL heat and mass transfer model includes the following three equations.
The first equation is for mass addition to the boundary layer, the second equation is for heat-to-
mass transfer ratio, and the third equation is for the overall correlation between the first and
second equations:

T, Ue Cho=ch/(Hr'ng) v (1)
r,U,Ch,=Mdot /B, Le =1 2)
Ch,/Ch, = f(B, M,) = I - (h MdotJr, U, Ch,) 3)

where r, is edge density, U, is edge velocity, Ch, is Stanton number without blowing, Q,,, is cold
wall heat transfer, H, is recovery enthalpy, H,, is gas-wall enthalpy, Ch, is Stanton number with
blowing, Mdot, is gas mass transfer, Le is the Lewis number, B, is ablation potential, M,, is
molecular wc1ght h=a(M,/M,)", his related to the molccular diffusion of the gas into the
boundary layer, M, is the molecular weight of the inviscid core at the edge of the boundary layer,
M, is the molecular weight of the injected gas, a is the coefficient, and b is the exponent (ref 9).

The TDK/CET analysis outputs inert gas-wall enthalpy and reacting gas-wall enthalpy
(both H,,) data as a function of pressure and temperature for chromium and A723 steel. This
analysis also outputs condensed phase mass fraction (C,,) and ablation potential (B,) data as a
function of pressure and temperature for chromium and A723 steel. Choosing chemical
equilibrium species requires considerable experience, since they may not actually exist due to
kinetic blocking. These products are confirmed by experimental gas-wall analyses for metal
combustion products and other applicable literature data (ref 9).



The TDK/CET thermochemical gas-wall analysis is a practical approximation of the gun
barrel bore surface due to sufficient combustion gas activation energy (high temperature) and
collisions (high pressure) needed for fast gas-wall reaction rates. The TDK/CET ablation model
assumes that as the gas diffuses to the wall, it reacts to form products as follows:

" B,=(C,-C,)IC,=(C, - CpIC, )

where B, is the ablation potential, C,, is the mass fraction of wall material, C, is the mass fraction
of the gas edge, C,, is the mass fraction of condensed phase products, and C,, is the mass fraction
of product gas (ref 9).

Figure 1 plots experimental system-specific gas-wall kinetic rate data, normalized mass
fraction versus temperature, from a thermogravimetric analysis of the gas-chromium and gas-
A723 steel couples needed for MACE code input. Notable features include the gas-wall reaction-
limited temperature (T,) and gas-wall diffusion-limited temperature (T (ref 9). T, is about
1500°R for A723 steel and 2100°R for chromium. Figure 2 plots experimental material-specific
wall softening data, normalized hardness versus temperature, from a thermomechanical analysis of
these materials needed for MACE code input. Notable features include the transformation
temperature (T,) of about 1800°R and melt temperature (7,,) of about 3200°R for A723 steel; no
T, but T, is about 3800°R for chromium.

The MACE code calculates the actual thermochemical response including wall ablation,
conduction, and erosion using the output of the above analyses and experimental or literature gas-
wall kinetic rate data. Figure 3 plots MACE analysis outputs of wall temperature (7,,) data as a
function of time at two axial positions (1 foot, 2 feet) and two firing rates (Ir = cold single shot,
12rb/1m = 12 rpm burst) for chromium and A723 steel. Notable features predict the 1.3 times
higher peaked, shorter duration chromium 7,,s compared to A723 steel due to A723 steel’s higher
ablative boundary layer thickening and lower thermal conductivity. For a given wall, other
features predict a 150 to 200°R decrease from the 1- to 2-foot axial position and a 90 to 110°R
increase from the cold single round to the hot 12 rpm burst.

For the gun system example, at two axial positions (1 foot, 2 feet), with cold and hot
firing rates (1r, 12rb/1m), Figure 4 plots MACE predictions of rounds required to achieve 0.040-
inch wall loss (R g-) for cracked (1 percent cracked surface area by metallography) and
uncracked 0.005-inch chromium plated A723 steel and A723 steel alone. Thermochemical
erosion increases by a factor of about 2.0 from cracked chromium plated A723 steel to A723 steel
alone. For a given wall, thermochemical erosion decreases by a factor of 1.4 from the hot to the
cold firing rates and substantially decreases from axial position 1 foot to 2 feet. Since uncracked
chromium plated A723 steel is virtually uneroded, it appears that A723 steel ablation at the
chromium cracks leaves unsupported chromium, which is subsequently removed by the high-
speed gas flow. For the six eroded wall combinations mentioned, Figure 3 T,s applied to Figures
1 and 2 show gas-wall reactions and cracking predominate since each of the six combinations



exceeded their T,s, but none approached their T,,s. These predictions agree well with actual gun
system erosion data. Thermochemical ablation is supported by actual gun system materials
analyses, which provided no evidence of melt-type ablation.
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